Web Sumber : Gurumuda.com

Pengantar

Dalam kehidupan sehari-hari, kita sering melihat atau menemui benda yang mengalami gerak jatuh bebas, misalnya gerak buah yang jatuh dari pohon, gerak benda yang dijatuhkan dari ketinggian tertentu atau bahkan gerak manusia yang jatuh dari atap rumah (he2….). mengapa benda mengalami gerak jatuh bebas ? Gerak Jatuh Bebas alias GJB merupakan salah satu contoh umum dari Gerak Lurus Berubah Beraturan. Apa hubungannya ? silahkan dibaca terus, selamat belajar jatuh bebas, eh selamat belajar pokok bahasan Gerak Jatuh Bebas. Semoga Tuhan Yang Maha Kuasa selalu menyertai anda, sehingga tidak pusing, masuk angin atau mual-mual selama proses pembelajaran ini….

Apa yang anda amati ketika melihat benda melakukan gerak jatuh bebas ? misalnya ketika buah mangga yang sangat enak, lezat, manis dan bergizi jatuh dari pohonnya. Biasa aja… :( Jika kita amati secara sepintas, benda yang mengalami gerak jatuh bebas seolah-olah memiliki kecepatan yang tetap atau dengan kata lain benda tersebut tidak mengalami percepatan. Kenyataan yang terjadi, setiap benda yang jatuh bebas mengalami percepatan tetap. Alasan ini menyebabkan gerak jatuh bebas termasuk contoh umum GLBB. Bagaimana membuktikan bahwa benda yang mengalami gerak jatuh bebas mengalami percepatan tetap ? secara matematis akan kita buktikan pada pembahasan Penurunan persamaan Jatuh Bebas (tuh, lihatlah ke bawah)

Lakukanlah percobaan berikut ini. Tancapkan dua paku di tanah yang lembut, di mana ketinggian kedua paku tersebut sama terhadap permukaan tanah. Selanjutnya, jatuhkan sebuah batu (sebaiknya batu yang permukaannya datar) dengan ketinggian yang berbeda pada masing-masing paku. Anda akan melihat bahwa paku yang dijatuhi batu dengan ketingian lebih tinggi tertancap lebih dalam dibandingkan paku yang lain. hal ini menunjukkan bahwa adanya pertambahan laju atau percepatan pada gerak batu tersebut saat jatuh ke tanah. Semakin tinggi kedudukan batu terhadap permukaan tanah, semakin besar laju batu tersebut saat hendak menyentuh permukaan tanah. Dengan demikian, percepatan benda jatuh bebas bergantung pada ketinggian alias kedudukan benda terhadap permukaan tanah. Di samping itu, percepatan atau pertambahan kecepatan benda saat jatuh bebas bergantung juga pada lamanya waktu. benda yang kedudukannya lebih tinggi terhadap permukaan tanah akan memerlukan waktu lebih lama untuk sampai pada permukaan tanah dibandingkan dengan benda yang kedudukannya lebih rendah. Anda dapat membuktikan sendiri dengan melakukan percobaan di atas. Pembuktian secara matematika akan saya jelaskan pada penurunan rumus di bawah. Di baca terus ya, sabar…

Pada masa lampau, hakekat gerak benda jatuh merupakan bahan pembahasan yang sangat menarik dalam ilmu filsafat alam. Aristoteles, pernah mengatakan bahwa benda yang beratnya lebih besar jatuh lebih cepat dibandingkan benda yang lebih ringan. Pendapat aristoteles ini mempengaruhi pandangan orang-orang yang hidup sebelum masa Galileo, yang menganggap bahwa benda yang lebih berat jatuh lebih cepat dari benda yang lebih ringan dan bahwa laju jatuhnya benda tersebut sebanding dengan berat benda tersebut. Mungkin sebelum belajar pokok bahasan ini, anda juga berpikiran demikian. Ayo ngaku…..

Misalnya



kita menjatuhkan selembar kertas dan sebuah batu dari ketinggian yang sama. Hasil yang kita amati menunjukkan bahwa batu lebih dahulu menyentuh permukaan tanah/lantai dibandingkan kertas. Sekarang, coba kita jatuhkan dua buah batu dari ketinggian yang sama, di mana batu yang satu lebih besar dari yang lain. ternyata kedua batu tersebut menyentuh permukaan tanah hampir pada saat yang bersamaan, jika dibandingkan dengan batu dan kertas yang kita jatuhkan tadi. Kita juga dapat melakukan percobaan dengan menjatuhkan batu dan kertas yang berbentuk gumpalan.

Apa yang berpengaruh terhadap gerak jatuh bebas pada batu atau kertas ? Gaya gesekan udara ! hambatan atau gesekan udara sangat mempengaruhi gerak jatuh bebas. Galileo mendalilkan bahwa semua benda akan jatuh dengan percepatan yang sama apabila tidak ada udara atau hambatan lainnya. Galileo menegaskan bahwa semua benda, berat atau ringan, jatuh dengan percepatan yang sama, paling tidak jika tidak ada udara. Galileo yakin bahwa udara berperan sebagai hambatan untuk benda-benda yang sangat ringan yang memiliki permukaan yang luas. Tetapi pada banyak keadaan biasa, hambatan udara ini bisa diabaikan. Pada suatu ruang di mana udara telah diisap, benda ringan seperti selembar kertas yang dipegang horisontal pun akan jatuh dengan percepatan yang sama seperti benda yang lain. Ia menunjukkan bahwa untuk sebuah benda yang jatuh dari keadaan diam, jarak yang ditempuh akan sebanding dengan kuadrat waktu. Kita dapat melihat hal ini dari salah satu persamaan GLBB di bawah. Walaupun demikian, Galileo adalah orang pertama yang menurunkan hubungan matematis.

Sumbangan Galileo yang khusus terhadap pemahaman kita mengenai gerak benda jatuh, dapat dirangkum sebagai berikut :

Pada suatu lokasi tertentu di Bumi dan dengan tidak adanya hambatan udara, semua benda jatuh dengan percepatan konstan yang sama.

Kita menyebut percepatan ini sebagai percepatan yang disebabkan oleh gravitasi pada bumi dan memberinya simbol g. besarnya kira-kira 9,8 m/s2. dalam satuan Inggris alias British, besarnya g kira-kira 32 ft/s2. percepatan yang disebabkan oleh gravitasi adalah percepatan sebuah vektor dan arahnya menuju pusat bumi.

Penurunan Persamaan Gerak Jatuh Bebas

Selama membahas Gerak Jatuh Bebas, kita menggunakan rumus/persamaan GLBB, yang telah dijelaskan pada pokok bahasan GLBB (dibaca dahulu pembahasan GLBB biar nyambung). Kita pilih kerangka acuan yang diam terhadap bumi. Kita menggantikan x atau s (pada persamaan glbb) dengan y, karena benda bergerak vertikal. Kita juga bisa menggunakan h, menggantikan x atau s. Kedudukan awal benda kita tetapkan y0 = 0 untuk t = 0. Percepatan yang dialami benda ketika jatuh bebas adalah percepatan gravitasi, sehingga kita menggantikan a dengan g. untuk persoalan Jatuh bebas, diambil ay = -g. Dengan demikian, persamaan Gerak Jatuh Bebas tampak seperti pada kolom kanan tabel.

Penggunaan y positif atau y negatif pada arah ke atas atau ke bawah tidak menjadi masalah asal kita harus konsisten selama menyelesaikan soal.

Catatan : percepatan gravitasi (g) adalah besaran vektor sehingga nilainya dipengaruhi oleh arah. Pada pembahasan mengenai kerangka acuan alias titik acuan, kita telah menyepakati bahwa pada gerakan horisontal alias gerak pada sumbu x, arah kanan dari titik acuan 0 bertanda + dan arah kiri bertanda -. Pada sumbu y alias pada gerakan vertical, gerakan ke atas bertanda + dan ke bawah bertanda -. Titik acuan 0 pada GJB dipilih ketika benda hendak jatuh. Dengan demikian, mengingat, menimbang dan menimang kesepakatan ini, maka diputuskan bahwa percepatan gravitasi pada GJB bernilai negatif, karena gerakan benda vertikal, berarah ke bawah dan menjahui titik acuan 0. ingat bahwa hal ini terjadi karena gaya gravitasi selalu menarik benda ke pusat bumi. Karena gravitasi selalu menarik segala sesuatu yang mempunyai massa ke bawah, maka pada Gerak Jatuh Bebas, nilainya selalu negatif. Selengkapnya akan kita pelajari gravitasi secara khusus pada pokok bahasan Gravitasi. Ini alasan mengapa g bernilai negatif pada GJB.

Pembuktian Secara Matematis

Pada penjelasan panjang lebar di atas, anda telah saya gombali untuk membuktikan secara matematis konsep Gerak Jatuh Bangun, eh Gerak Jatuh Bebas bahwa massa benda tidak mempengaruhi laju jatuh benda. Di samping itu, setiap benda yang jatuh bebas mengalami percepatan tetap, semakin tinggi kedudukan benda dari permukaan tanah, semakin cepat gerak benda ketika hendak mencium tanah. Demikian pula, semakin lama waktu yang dibutuhkan benda untuk jatuh, semakin cepat gerak benda ketika hendak mencium batu dan debu. Masih ingat ga? Gawat kalo belajar sambil tiduran, tuh colokin tangan ke komputer biar pemanasan (piss…..)

Sekarang, rumus-rumus Gerak Jatuh Bebas yang telah diturunkan diatas, kita tulis kembali untuk pembuktian matematis.

(sory, baru lupa… embel-embel y di belakang v hanya ingin menunjukan bahwa benda bergerak vertikal atau benda bergerak pada sumbu y, bila kita membayangkan terdapat sumbu kordinat sepanjang lintasan benda. Ingat lagi pembahasan mengenai titik acuan)

Amati rumus-rumus di atas sampai puas. Ini perintah Jenderal, ayo dilaksanakan. Kalo bisa sampai matanya bersinar…. :)

Pembuktian Nol

Setelah mengamati rumus di atas, apakah dirimu melihat lambang massa alias m ? karena tidak ada, maka kita dapat menyimpulkan bahwa massa tidak ikut bertanggung jawab dalam Gerak Jatuh Bebas. Setuju ya ? jadi masa tidak berpengaruh dalam GJB.

Pembuktian Pertama

Misalnya kita meninjau gerak buah mangga yang jatuh dari tangkai pohon mangga. Kecepatan awal Gerak Jatuh Bebas buah mangga (vy0) = 0 (mengapa bernilai 0 ? diselidiki sendiri ya….) Dengan demikian, persamaan 1 berubah menjadi

melalui persamaan ini, dapat diketahui bahwa kecepatan jatuh buah mangga sangat dipengaruhi oleh percepatan gravitasi (g) dan waktu (t). Karena g bernilai tetap (9,8 m/s2), maka pada persamaan di atas tampak bahwa nilai kecepatan jatuh benda ditentukan oleh waktu (t). semakin besar t atau semakin lamanya buah mangga berada di udara maka nilai vy juga semakin besar. Tanda negatif hanya menunjukan bahwa benda bergerak ke bawah/permukaan bumi. Ingat bahwa kecepatan adalah besaran vektor dan tanda negatif menunjukan arah gerak benda, tetapi tidak mempengaruhi nilai besaran vektor. bisa dipahami ya ?

nah, kecepatan buah mangga tersebut selalu berubah terhadap waktu atau dengan kata lain setiap satuan waktu kecepatan gerak buah mangga bertambah. Percepatan gravitasi yang bekerja pada buah mangga bernilai tetap (9,8 m/s2), tetapi setiap satuan waktu terjadi pertambahan kecepatan, di mana pertambahan kecepatan alias percepatan bernilai tetap. Alasan ini yang menyebabkan Gerak Jatuh Bangun termasuk GLBB.

Pembuktian Kedua

Sekarang kita tinjau hubungan antara jarak atau ketinggian dengan kecepatan jatuh benda

Misalnya kita meninjau batu yang dijatuhkan dari ketinggian tertentu, di mana batu tersebut dilepaskan (bukan dilempar ke bawah). Jika dilepaskan maka kecepatan awal alias v0 = 0, seperti buah mangga yang jatuh dengan sendirinya tanpa diberi kecepatan awal. Jika batu tersebut dilempar, maka terdapat kecepatan awal. Paham ya perbedaannya….

Karena vy0 = 0, maka persamaan 3 berubah menjadi

Dari persamaan ini tampak bahwa besar/nilai kecepatan dipengaruhi oleh jarak atau ketinggian (h) dan percepatan gravitasi (g). Sekali lagi, ingat bahwa percepatan gravitasi bernilai sama (9,8 m/s2). Karena gravitasi bernilai tetap, maka nilai kecepatan sangat ditentukan oleh ketinggian (h). semakin tinggi kedudukan benda ketika jatuh, semakin besar kecepatan benda ketika hendak menyentuh tanah. setiap satuan jarak/tinggi terjadi pertambahan kecepatan saat benda mendekati tanah, di mana nilai pertambahan kecepatan alias percepatannya tetap.

Contoh Soal Konsep

  1. apakah kecepatan dan percepatan memiliki arah yang sama ?

kecepatan dan percepatan tidak perlu memiliki arah yang sama. Setiap benda yang bergerak ke atas kecepatannya adalah positif (ke atas), sedangkan percepatannya negatif (gaya gravitasi selalu menarik ke bawah)

  1. apakah sebuah benda yang dilempar ke atas mempunyai percepatan nol pada titik tertinggi ?

Pada titik tertinggi, bola mempunyai kecepatan nol untuk sesaat. apakah percepatannya nol di titik itu ? tidak. Gravitasi tidak pernah berhenti bekerja. Sehingga a = -g = -9,8 m/s2 bahkan pada titik itu. Anggapan bahwa percepatan di titik tertinggi adalah nol mengantar kita pada kesimpulan bahwa dalam mencapai titik tertinggi, bola akan melayang-layang di sana. Karena jika nilai percepatan gravitasi adalah nol, kecepatan akan tetap nol dan bola tersebut akan tetap berada di sana tanpa jatuh.

Contoh soal hitungan

  1. sebuah batu bermassa 2 kg dilepaskan dari keadaan diam dan jatuh secara bebas. Tentukan posisi dan laju batu tersebut setelah bergerak 1 s, 5 s dan 10 s.

panduan jawaban :

Anda harus mengidentifikasi atau mengecek masalah pada soal ini terlebih dahulu sebelum menyelesaikannya. perhatikan bahwa yang ditanyakan adalah kedudukan dan laju batu setelah dijatuhkan sekian detik. Setelah anda berhasil mengidentifikasi masalahnya, selanjutnya anda memutuskan untuk menggunakan solusi alias cara pemecahan yang seperti apa. Tersedia 3 rumus yang dapat anda gunakan. Pakai yang mana ?

Gampang khan ? tinggal dimasukan nilai t (waktu). selesaikan sendiri ya… lagi malas neh…

  1. Sebuah bola dilemparkan dari tanah tegak lurus ke atas dengan laju 24 m/s.
    1. berapa lama waktu yang dibutuhkan untuk mencapai titik tertingginya ?
    2. berapa ketinggian yang dapat dicapai bola ?

panduan jawaban :

sebelum menghasilkan jawaban, langkah pertama yang harus kita lakukan adalah mengidentifikasi atau mengenali permasalahan yang dimunculkan pada soal. Setelah itu, selidiki nilai apa saja yang telah diketahui. Selajutnya, memikirkan bagaimana menyelesaikannya. Hal ini penting dalam memilih rumus yang disediakan.

a. berapa lama waktu yang dibutuhkan untuk mencapai titik tertingginya ? Di titik tertinggi, vy = 0. pada soal di atas diketahui kecepatan awal vy0 = 24 m/s . untuk memperoleh t, kita gunakan rumus

b. berapa ketinggian yang dicapai bola ?

karena telah diketahui kecepatan awal dan kecepatan akhir, maka kita menggunakan rumus

Selamat Belajar…..

Referensi :

Giancoli, Douglas C., 2001, Fisika Jilid I (terjemahan), Jakarta : Penerbit Erlangga

Halliday dan Resnick, 1991, Fisika Jilid I, Terjemahan, Jakarta : Penerbit Erlangga

Tipler, P.A.,1998, Fisika untuk Sains dan Teknik-Jilid I (terjemahan), Jakarta : Penebit Erlangga

Young, Hugh D. & Freedman, Roger A., 2002, Fisika Universitas (terjemahan), Jakarta : Penerbit Erlangga